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SUMMARY 
A mechanism is proposed by which cellular convective motion 

of the type observed by H. BCnard, which hitherto has been 
attributed to the action of buoyancy forces, can also be induced 
by surface tension forces. Thus when a thin layer of fluid is 
heated from below, the temperature gradient is such that small 
variations in the surface temperature lead to surface tractions 
which cause the fluid to flow and thereby tend to maintain the 
original temperature variations. A small disturbance analysis, 
analogous to that carried out by Rayleigh and others for unstable 
density gradients, leads to a dimensionless number B which 
expresses the ratio of surface tension to viscous forces, and which 
must attain a certain minimum critical value for instability to occur. 
The  results obtained are then applied to the original cells described 
by BCnard, and to the case of drying paint films. It is concluded 
that surface tension forces are responsible for cellular motion in 
many such cases where the criteria given in terms of buoyancy 
forces would not allow of instability. 

INTRODUCTION 
Experiments have shown* that drying paint films often display steady 

cellular circulatory flow of the same type as that observed in the case of 
fluid layers heated from below. I n  the latter case (that of the so-called 
Benard cellst) the motion can usually be ascribed to the instability of the 
density'gradient that would be present if the fluid were stationary. This 
cannot be the mechanism causing the flow in the former case, since the 
circulation is observed whether the free surface is made the underside or the 
topside of the paint layer, that is, even if the gravity vector is effectively 
reversed. Instead it will be shown that surface tension forces are sufficient to 
cause instability and are probably responsible for many of the cellular patterns 
that have been observed in cooling fluid layers with at least one free surface. 

* These were brought to my notice by Dr  R. Cousens of the Research Department 
of I.C.I. Ltd., Paints Division, who put forward the basic idea of a phenomenon 
dominated by surface tension, and pointed out many of the relevant physical factors 
that are introduced in this paper. The  analysis given stems largely from his earlier 
investigation. 

t For a description of these see, for example, Prandtl (1952). 

F.M. 21 
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The essential physical features of the phenomenon spring from the 
fact that surface tension-in most fluids at most temperatures-is a monotone 
decreasing function of temperature and in the case of two constituents, 
a function of relative concentration. Thus if the free surface of a fluid 
layer is not at a uniform temperature or of uniform relative concentration, 
effective surface tractions are present and motion within the fluid must be 
expected to take place. This idea is a very old one and has been used in 
a qualitative sense by several authors to explain many otherwise puzzling 
phenomena. 

If we consider for a moment the case of a homogeneous liquid layer 
cooling by radiation from the upper free surface and heated at the lower 
fixed surface, a simple qualitative explanation of the existence of steady 
cellular motion can be given. In  the centre of the cells warm fluid is drawn 
towards the surface ; this spreads across the surface, cooling as it does so 
until it reaches the edges of the cell where it descends towards the lower 
surface of the layer, and is there warmed. The decrease in temperature 
across the surface from centre to edge of cell is accompanied by an increase 
in surface tension and hence by surface tractions that tend to maintain 
the circulation. The amplitude of the motion will of course be determined 
by the physical parameters that characterize the particular fluid in question 
and by the temperature gradients involved. The driving force for the 
motion is provided by the flow of heat from the heated lower surface to the 
cooled upper surface. 

As in the case of Benard cells induced by density variations, certain 
minimum requirements must be satisfied in order that cells may develop 
under the action of surface tension forces. These are examined analytically 
by means of small-disturbance theory (analogous to that developed by 
Rayleigh, Jeffreys and others for buoyancy forces) in the following section. 
Critical values for a certain dimensionless number are derived, corre- 
sponding to the case of marginal stability. Associated with these critical 
values are critical wave-numbers which define the size of the marginally- 
stable cells. 

In  the concluding section an application of the results obtained to 
experimental observations on thin liquid films confirms the relevance of 
surface tension forces in many cases of instability. Somewhat surprisingly, 
it seems almost certain that many of the cells observed in molten spermaceti 
by BCnard himself were in fact caused by surface tension forces. 

SMilLL DISTURBANCE ANALYSIS 

A small disturbance analysis will now be carried out for the particular 
case of an infinite homogeneous liquid layer of uniform thickness whose 
lower surface is in contact with a fixed plane and whose upper surface is 
free. The only physical quantities that are assumed to vary within the 
fluid are the temperature, the surface tension, which is regarded as a function 
of temperature only, and the rate of heat loss from the surface, also a function 
of temperature only. These are in fact the dominant factors in the cases 
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observed and a discussion of the relevance of this idealization will be given 
where required. For the case of a drying paint film, temperature variations 
can be replaced by concentration variations ; the same analysis applies 
with only trivial redefinition of the parameters involved. 

The treatment adopted will be closely parallel to that developed by 
Rayleigh (1916), Jeffreys (1926), Low (1929), and Pellew & Southwell 
(1940), for the case of density-induced instability, and many of their 
arguments will be taken over directly. (A good concise account is given 
by Lin (1955, 87.3)) 

We start by defining the steady-state (unstable) equilibrium conditions 
that are to be perturbed, and we consider therefore a liquid layer whose 
bottom surface is given by the plane y = 0, whose free surface is given by 
the plane y = d, and whose temperature is a function of y only. If 

Qo = rate of heat loss per unit area from the upper free surface in the 
unperturbed system, 

k = coefficient of heat conduction in the liquid, and 
TUB = steady-state temperature of the lower surface in the unperturbed 

then the unperturbed temperature distribution To in the liquid will be given 
system, 

by 
To = T o B -  Py, (1). 

Qo = kP, (2)' 
where 

since the rate of supply of heat to the surface from the liquid must equal 
the rate of loss of heat from the surface to its upper environment. In the 
relation (2), we suppose the magnitude of Qo to be defined by the upper 
surface temperature Tos and the nature of the environment; the method 
of heat transfer may be conduction, convection or radiation, or any 
combination of the three. We shall assume that the environment exerts 
no mechanical forces on the liquid, and serves only as a heat sink. 

The temperature ToB will itself depend on the nature of the liquid, 
the supply of heat to the bottom surface and the (equal) loss of heat from 
the top surface. However, we are not concerned here with a thorough 
analysis of the mechanism of heat transfer to and from the liquid layer, 
though these matters become relevant in the investigation of any particular 
physical phenomenon. Equations (1) and (2) provide sufficient information 
for our immediate purposes. 

Next, we superpose an infinitesimal disturbance and linearize the 
equations of motion and heat conduction. We write 

v = kinematic viscosity of the liquid, 
K = thermometric conductivity of the liquid, 
p = density of the liquid, 
t = time, 
o = velocity (supposed small) in the y-direction, 
S = surface tension of the liquid, 

2 1 2  
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Q = rate of heat loss per unit area from the upper free surface (now a 

T = temperature distribution in the liquid (a function of x, y and z ) .  
T'  = T - To is thus the perturbation temperature (also supposed small), 

and we write T i  for its value at the surface. 
The equations of motion and heat conduction become 

function of x and x ) ,  

($ -vv2)V2v = 0, 

($ - K V ) V ~ T '  = flu. (4) 

It will be noted that the equation for v contains no buoyancy term and is 
thus much simpler than in the case considered by Rayleigh. We also write* 

where -u = (aS/aT).  =Tos represents the rate of change of surface 
tension with temperature, evaluated at temperature Tos, with So = S( T,,), 
and 

where q = (aQ/aT),  = ToS represents the rate of change with temperature 
of the rate of loss of heat per unit area from the upper surface to its upper 
environment. u is a function of the liquid only, 
while qis likely to be affected in a complicated way by the surface-environment 
relations. The relations ( 5 )  and (6) for S and Q are taken to depend linearly 
on T' because we are considering an infinitesimal disturbance theory and 
therefore need only the first two terms in a Taylor expansion. 

S = &-uTL ( 5 )  

Q = Qo + qTk (6) 

Qo is as defined before. 

The boundary conditions on the velocity are 
av v = - = o ,  
aY 

when y = 0, 
azv  

aY 

a 2  a 2  v ; = - + - .  
ax2 a z 2  

v = 0, p v  -2 = uV: T' ,  

when y = d,  where 

The second relation in (7) follows directly from the continuity condition. 
The necessity for the first of the relations (8), particularly in the case of 
neutral stability, is explained by Jeffreys. The second relation (8) equates 
the change in surface tension due to temperature variations across the 

* T h e  boundary conditions (including ( 5 )  and (6)) are of crucial importance; 
by means of a suitable choice for these many physical phenomena may be very reason- 
ably idealized. The aim in this account is not to provide an exhaustive description 
of these phenomena and their relevant idealizations, but rather to provide a general 
treatment that illustrates the fundamental surface tension mechanism and compre- 
hends its many realizations. I t  is shown that the use of but three parameters suffices 
to describe the system. 
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surface to the shear stress experienced by the fluid at the surface, use being 
made of the continuity condition. The effect of the surface tension on the 
normal stress condition is ignored because its effects are small. (This same 
assumption is made in the conventional thermal convection problem.) 

It is the boundary conditions on the temperature that need most careful 
explanation. It is worth considering in this respect the possible physical 
circumstances leading to the thermal equilibrium expressed by (l), (2), in 
order to understand the significance of the boundary conditions that will 
be applied to the perturbation temperature. The supply of heat to the 
bottom surface of the liquid may be from a material whose coefficient of 
heat conduction is either large or small compared with that of the liquid. 
If the boundary consists of a good conductor of large extent, then the 
temperature TOB may be taken as a given fixed constant, and will lead, in 
the perturbed case, to the ‘conducting’ condition T‘ = 0 at  the lower 
boundary. If however, the bottom boundary of the liquid consists of a 
layer of a bad conductor itself in contact at its lower surface with a good 
conductor (for example, glass on metal), then the temperature gradient 
in the material bounding the liquid may be large compared with the 
temperature gradient in the liquid itself; TOB will, in the steady unperturbed 
state, be a constant, though it will be determined by the thermal properties 
both of the badly-conducting solid and of the liquid, and of their respective 
thicknesses. A slight change in the bottom surface temperature will not 
affect the rate of heat conduction through the bad conductor by any 
appreciable amount. Hence the lower boundary condition on the 
perturbation temperature will be approximately aT‘/ay = 0. This we shall 
define, illogically perhaps, but consistently with previous authors, as the 
‘ insulating ’ boundary condition. The two cases chosen above are limiting 
cases of the general mixed boundary condition 

which we can assume applies, where I.’ is a constant depending on the 
thermal properties of boundary and liquid. By a suitable choice of materials 
all values of Ei ranging from 0 to co may be obtained. For convenience 
we shall consider in detail only the two extreme values Y = 0 and Ei-l = 0 ; 
since we shall find that they do not lead to radically different results, an 
exhaustive solution for arbitrary values of Y will not be attempted. 
Because of some confusion which has arisen among previous authors it 
is worth pointing out that the case Y-l = 0 does not correspond only to  
a physically quasi-steady system in which the true insulating boundary 
condition, aTjay = 0, strictly applies, but also to  a strictly steady system 
in which the so-called ‘ insulating ’ boundary condition on the perturbation 
temperature is a limiting approximation to the exact boundary condition. 

The balance between heat supply to and heat loss from the upper 
surface may exhibit similar characteristics. If, for simplicity, we consider 
a discrete jump in temperature as occurring at the free surface, then this 
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jump may be small or large compared with the drop in temperature across 
the liquid layer, depending on the efficiency of the processes for removing 
heat from the surface. Whatever the process, the equality 

must hold at y = d, using the relation (6) and the reasons given to justify 
the equality (2). If the temperature jump is large, then we expect q to be 
small, and vice versa. The particular value to be ascribed to q will depend 
on circumstances, and for this reason we shall retain it as a parameter in 
the subsequent analysis. I t  is worth noting that if q -+ 00, then we approach 
the ' conducting ' boundary condition, and surface tension effects will not 
be present, whereas if q + 0, we approach the ' insulating ' boundary 
condition, as defined above, valid for perturbation of a strictly steady-state 
system. 

A further application of this small-disturbance analysis to concentration 
gradients in a layer composed of a mixture of two liquids will show-if 
only by comparison with experiment-that predictions of instability are 
relevant for quasi-steady systems. If convection cells can be set up in 
a time small compared with that in which changes occur in the quasi-steady 
thermal gradient p, then the application of strict ' insulating ' boundary 
conditions leads to meaningful results. 

If we now introduce dimensionless variables 

where a is a dimensionless constant arising from the separation of variables ; 
and that 

[P-Pr(DZ-a2)I(D2-aZ)f= 0, (15) 

[p-(D2-a2)]g = -f, (16) 

where D = d/dy and Pr = Y / K .  The particular choice of the forms (12), (13) 
for v ,  T' is well explained by Pellew & Southwell (1940) who show that 
-the constant a is merely indicative of a periodic structure in the (4, t)-plane. 
The shape of the cells associated with the solution obtained is not specified 
and a second-order theory would be required to select a particular cellular 
structure. Christopherson (1940) has given the solution of (14) for 
hexagonal cells. 
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The boundary conditions (7), (8) and (10) become* 

f(0) =f’ (0 )  = 0 ;  f(1) = 0, f”(1) = a2Bg(l), g’(1) = -Lg(l) ;  (17) 
where 

and 

are dimensionless constants. Physically speaking, the number B is a 
dimensionless grouping of physical parameters expressing the relative 
importance of surface tension forces (caused by temperature variation) 
and of viscous forces, in any small disturbance responsible for both of 
them. The number L can be suitably interpreted in terms of the arguments 
given earlier with regard to relation (10). 

As a last boundary condition, we have for the conducting case ( Y  = 0 

in (9117 g(0) = 0, (20) 
and for the insulating case (Y-l = 0 in (9)), 

The general boundary condition (9) would lead to the relation 

where M =  Y / d ,  and although we shall not retain it as an independent 
parameter, we see that M forms with B and L a set of three parameters 
which suffice to describe the system for our purposest. 

In common with earlier workers, we look for solutions of the case of 
neutral stability when we put p = 0. Equations (15) and (16) become 

g‘(0) = 0. (21) 

g’(0) = Mg(O), 

(02-c?)(D2-a2)f = 0, (22) 
(23 ) (D2 - .”g = f. 

The solution of (22), subject to the first three conditions (17), is 

7 sinh a7 - a7 cosh a7 a cosh a - sinh a 
sinh a 

f = a( sinha7 -t 

and the solution of (23) ,  subject to the last condition (17) and (20) or (21) 
becmes 

a cosh a - sinh a 
4a sinh a 

v2 cash - 

a cosh a - sinh a 
4a2 sinh u 

- &12 sinh a7 - 7 sinh a7 - 

(a2 cosh2 a + a sinh a cosh a + sinh2 a) + L(a2 + a sinh u cosh u + sinh2 a )  
4a2 sinh a(a cosh a t L sinh a)  

x sinh aq]  (25) 

* (’) now denotes differentiation with respect to the single independent variable. 
t It  must be made clear that the evaluation of these three parameters in any physi- 

cally observed circumstances is not necessarily easy; it is however a separate problem. 
A lengthy consideration of possible values to be expected, beyond that already given, 
would only obscure the explanation of the fundamental instability that is being 
analysed. 
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for the conducting case, and 

a cosh a - sinh a 
4a sinh a 

a cosh a - sinh a 

q2 cash - 

3 
- $qz sinh aq - q sinh aq - - sinh aq - 

4a2 sinh a 4u2 

(a  cosh a - sinh }cosh a?] 
+ L(a2 + a sinh a cosh a - 2 sinh2 a )  

4a2 sinh a(a sinh a + L cosh a )  

(26) 

for the insulating case. Substitution into the fourth of the boundary 
conditions (17), namely the one involving both f and g, yields a relation 
between B, L and a. This is 

(27) 
8a(a cosh a + h sinh .)(a - sinh a cosh a )  

(a3 cosh a - sinh2 a )  
B =  

for the conducting case, and 

B =  (28) 
8a(a sinh a + h  cosh a)(. - sinh a cosh a )  

(a3 sinh a - u2 cosh a + 2a sinh cx - sinh2 a cosh a )  

for the insulating case. These are plotted in figures 1 and 2 for the various 
values of L. The curves obtained are neutral stability curves, and without 
repeating the analysis for p # 0 it is clear which regions refer to growing 
disturbances and which to damped disturbances. All the curves asymptote 
to B = 8a2 for large values of c(, whilst all display a critical (minimum) 
value of B corresponding to a particular value for a for which stable 
disturbances are first possible. The  case L = 0 for the insulating boundary 
condition is particular in that the critical value of cx is zero, B = 48. Apart 
from this special case, the shape of the neutral stability curves is very similar 
in the conducting and insulating cases ; in general larger positive values 
of L lead to greater stability. The  values of L encountered in practice 
would depend on the thickness of the film and for very thin films would 
tend to zero. Detailed solutions for the more general boundary condition (9) 
with finite non-zero values of Y are not given but it is not expected that 
these would behave very differently from the two limiting cases L’= 0, 
and Y-l= 0. 

I t  is interesting to compare the dimensionless number B, defined by (18), 
which is relevant for the surface tension mechanism, with the Rayleigh 
number 

where g is the gravitational acceleration and y is the coefficient of thermal 
expansion of the liquid, which is relevant for the density-dependent mech- 
anism. I n  particular we may compare the critical value Bcrit = 80 when 
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L = 0, from figure 1,  with the corresponding critical value Acrit = 571* (see 
Jeffreys (1926), the case of one free ' insulating 't and one fixed conducting 

I I I I I 

0 I00 2 0 0  3 0 0  4001 
6 

Figure 1. Neutral stability curves, conducting case. 

0 100 2 0 0  3 0 0  400 
B 

Figure 2. Neutral stability curves, insulating case. 

* This value is the best estimate that is available, and although it was calculated 
using erroneous boundary conditions, it is expected to be close to the correct result. 
Since we are using it for order of magnitude arguments, the discrepancy need not 
trouble us unduly. 

I t  corresponds to a case 
of uniform heat flow, as does our case L = 0. 

t ' Insulating ' as regards the perturbation temperature. 
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surface, and the amending paper Jeffreys (1928)). 
leads, for any given fluid layer, to a critical thickness 

The former of these 

and the latter to a thickness 

d, = 

These will be equal for a value d12 given by 

For most liquids at laboratory temperatures this relation leads to values 
for d,, of the order of 1 cm. For thicknesses less than d12, then, we expect 
surface tension forces to be more effective than buoyancy forces in producing 
instability, and, for values of d as small as 1 mm, the onset of cellular 
motion could confidently be attributed to surface tension rather than to 
buoyancy. Since L will not be large for sufficiently small values of d and 
since Befit does not vary very rapidly with L, the arguments are not altered 
greatly if non-zero values for L are assumed to apply. 

COMPARISON WITH OBSERVATION AND EXPERIMENT 

The original observations of BCnard (1900, 1901) provide a very suitable 
illustration of the instabilities considered above. For with spermaceti 
he achieved cells in layers less than + mm thick when the temperature 
of the lower surface was maintained at 100°C. Moreover, these cells 
persisted even when the temperature of the lower surface approached 50" C. 
Since spermaceti solidifies at rather above 50" C an upper value can be placed 
on the temperature variation across the layer and can only have been a degree 
or two, if that, in some cases. BCnard gives a value of 7.7 x c.g.s. units 
for y and, fortunately for our purposes, a value of nearly 5 x c.g.s. units 
for u. We can assume that the case of a lower rigid conducting and an upper 
free ' insulating ' boundary applies approximately to his experiments since 
the lower surface was metallic and the temperature difference between the 
upper surface and its surroundings can be assumed large compared with 
the drop in temperature across the liquid layer. It would require detailed 
calculation to obtain an accurate estimate for L in this case, since the 
mechanism for heat transfer involves both convection and radiation. 
However, a rough calculation shows that L < l-whether it be lop3 or 10-1 
is scarcely important since figure 1 shows that the critical value B necessary 
for instability only increases by a factor of 3 when L = 5-and we can 
therefore use the approximation L = 0 as an initial approximation. 

Even if we assume that K was as small as and v as small as 10-2, 
the value obtained for A is still less than 571. On the other hand, for 
reasonable values of K (5 x a value of B in excess 
of 80 is obtained even for a temperature drop of only 1 O C across the layer. 
Furthermore the ratio of cell size to layer thickness quoted by BCnard 

and v (5 x 



On convection cells induced by surface tension 499 

leads to values of M lying between 2.1 and 2-5 which are in good agreement 
with the analysis given in the previous section, where uCrit = 2.0. The 
equivalent value of from the analysis of Jeffreys is 3.5, which even 
allowing for error is significantly different from the observed values. 
Thus we see that the buoyancy mechanism has no chance of causing 
convection cells, while the surface tension mechanism is almost certain 
to do so, and that observations support this. (Going back to the 
choice of L = 0, we see that this was not critical and hence that an exact 
analysis of the heat transfer at the surface is not necessary to sustain the 
argument.) An intimation that the instability theory based on buoyancy 
forces would not account for all of BCnard’s results appears in a paper by 
Volkovisky (1939). 

The allied problem of a liquid cooling by evaporation may be treated 
in a similar fashion. Although no strictly steady equilibrium state may 
be presupposed, owing to the loss of fluid from the surface, the effect of 
evaporation may be reasonably well represented by a given heat loss from 
the surface, using a value for L that depends on the rate of evaporation 
and the latent heat of vaporization. A quasi-steady value for p must be 
assumed to hold. 

The application of the analysis to the case of a mixture of two liquids, 
one more volatile than the other, requires more explanation. Two factors 
tending to instability will now be relevant. The first, that due to temperature 
variations, has been treated already. The second is that due to relative 
concentration variations. This may be treated separately using a suitable 
interpretation of the analysis given above for temperature effects. For 
if the temperature T is interpreted as the concentration C of the volatile 
liquid 9, in the non-volatile liquid z2, the constant k is interpreted as the 
coefficient of diffusion of 9, in p2 and the parameters u, q and y refer to 
variations with concentration C, then the equations (3) and (4) are 
appropriate equations for describing small disturbances due to concentration 
variations in a layer whose equilibrium (or quasi-steady) concentration 
gradient is given by p-for the moment we regard /3 as some unspecified 
function of y.  Previous work has shown-see for example Batchelor (1954) 
-that the most unstable case, for any given concentration drop across the 
layer, occurs when the gradient p is a constant*. Consequently, although 
the instantaneous concentration across the layer for the case of surface 
evaporation of 8, from a mixture of 2, and P2 would never be a linear 
function of y, we may safely use a value of 

to obtain a lower limit for stability. The boundary conditions on the 
velocity, ( 7 )  and (8), would still apply; the relation (10) would also apply 
with suitable interpretation ; but at the bottom surface the insulating 
condition would now be relevant. Hence the result (28), displayed in figure 2, 
can fairly reasonably be applied to describe the concentration effect. In  

* This has been verified analytically for the particular choice of 8: ,6 = C,/bd, 
.d > y > d(1-b); ,6 = O,d(l-b)  > y  > 0 ;  0 < b < 1. Instabilityisgreatestforb = 1. 

B = Cm,# 
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general terms the temperature and concentration effects are additive and 
for any given circumstances a joint criterion replacing either (27) or (28) 
could be calculated. This will not be carried out here because of the 
difficulty in prescribing the equilibrium concentration gradient. 

A series of experiments carried out in this laboratory on thin layers 
of mixtures of liquid paraffin and ether have shown convection cells of 
polygonal type when evaporation of the ether takes place. Estimates of 
the buoyancy forces involved showed that these could not be responsible 
for the motion. On the other hand, the difference in surface tension 
between liquid paraffin (32 c.g.s. units) and ether (19 c.g.s. units), combined 
with their temperature variations, leads to surface tractions large enough 
to maintain the motion. For example, a 5% concentration of ether 
evaporating at room temperature (say, 15" C or less) showed cells down 
to a layer thickness of 0.5 mm, this critical thickness being highly repro- 
ducible; even allowing for a very high rate of evaporation, and adding 
the concentration and temperature effects on the density, a value of A 
of the order of 10 or less is obtained. Similarly crude estimates of B for 
the two effects suggest instability. The ratio of cell size to layer thickness 
proved to be relatively constant over a fair range of layer thickness and 
using the analysis of Christopherson (1940) a value of o! N 2.0 was obtained, 
which is in reasonable agreement with our analysis. 

Similar experiments using a wide range of both volatile and non-volatile 
liquids have been carried out by Dr Cousens. All his results are in excellent 
qualitative agreement with the ideas described here. In  particular, by 
choosing a volatile fluid with higher surface tension than the non-volatile 
base, cellular motion was inhibited. The addition of a very small quantity 
of silicone oil to various mixtures also inhibited cell formation by reducing 
the surface tension overall. 

The author wishes to thank Dr R. Cousens for pointing out the probable 
role of surface tension and for helpful discussion of the observations quoted. 
It is hoped to publish a joint paper on the specific application of the 
foregoing theory to paint films. The author is also grateful for many useful 
criticisms by the referees. 
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